
EXTENDING PUPPET
WITHIN REASON - AND BEYOND

Felix Frank

CfgMgmtCamp.eu Gent 2017

Felix - trying to automate all the things since 2004

ask me about Puppet
ask me about Ansible
ask me about mgmt (soon)
...or ask my employer if I can help with your project

In my younger days, I'd play with my computers, read a lot,
and write a little code.

Another thing I enjoyed:

https://www.toysperiod.com/images/lego-parts.jpg

http://brickset.com/sets/theme-Space/subtheme-Spyrius

http://www.fbtb.net/2014/07/25/sdcc-lego-smaugh-statue-details/

http://www.spydergrrl.com/2015/12/homemade-lego-advent-calendar-2015-day_9.html

https://www.lego.com/en-us/mindstorms/about-ev3

A more compact hobby

http://www.techspot.com/review/254-lenovo-thinkpad-edge/

FOSS: be creative, enrich your life/career, and others

also, productively exercise your privilege

Puppet and its Ruby code base are not unlike LEGO

a number of differently styled elements
parts fit together more or less seamlessly
make new constructs from existing atoms
become part of a large international community

Puppet is successful
because of its powerful core

and rich extension points

There is a number of ways to extend Puppet.

Let's talk about each in turn.

http://cuteotters.com/wordpress/?m=200607

Except that would be super boring

Let's answer a few questions instead:
How can you allow Puppet to...

1. install and manage your new FOSS tool
2. use map/reduce algorithms to compute config settings
3. bring your cloud infrastructure under version control
4. show you what is being managed
5. make you a sandwich
6. interface with other tooling
7. do really weird and/or amazing things

How can I teach Puppet about
this new tool I wrote?

It should work kind of like this

class { "zooraxis":
 port => 9791,
 user => "www-data",
 queues => 27,
}

The common Puppet module
Add helpful classes (and maybe some defines)

for common use.

Basically a library for Puppet DSL code

Arguably not an actual Puppet extension.

http://www.notable-quotes.com/a/arrogance_quotes.html

Regardless, these are the backbone of the module
ecosystem and integral part of Puppet's success.

By the way

The majority of the

~100 modules maintained by
Vox Pupuli

are this kind of module.

https://voxpupuli.org/

Modules are also the way to
ship any kind of extension to

the user.

How to use map/reduce or
other complex algorithms

with Puppet?

PUPPET FUNCTIONS
A powerful way to run arbitrary Ruby code

from the catalog builder.

With Puppet 4, you can also write functions
in Puppet DSL.

This is cool for teams with insular
or missing Ruby knowledge.

Ruby functions are still worthwhile.

1. They can take lambda arguments.
(You win this session if you can come up with a sensible
use for this.)

2. They can invoke arbitrary Ruby or REST APIs.

In summary, Puppet functions have two uses.

Make your code more DRY and
readable.

Call out to external so�ware.

The cool community example
query_resources and friends
from dalen-puppetdbquery

https://github.com/dalen/puppet-puppetdbquery

How to provision and manage
your cloud infrastructure

with Puppet
Because Terraform can be brutally literal

Custom Puppet Types and
Providers

by example of the amazing by Puppet's own
Gareth Rushgrove

AWS module

https://forge.puppet.com/puppetlabs/aws

Introducing handy new types for aws resources.

ec2_instance { 'keats':
 ensure => present,
 region => 'us-west-1',
 image_id => 'ami-ef560a81',
 instance_type => 't1.micro',
}

supports EC2 instances, VPC, Route52, RDS etc.

These are a good fit for Puppet resources because
the AWS API implements CR(U)D.

check whether an instance exists
create or destroy it as desired
if possible, apply changes to managed properties

With custom types/providers, Puppet will take advantage of
optimizations like prefetching etc.

How can I find out what config
files are managed?

Any profiles missing?

What can I touch manually?

PUPPET FACES
a very convenient way to implement

new Puppet subcommands

http://nathanst-mo.tumblr.com/post/115601535211/replacement-puppet-faces

Community example

The dalen-puppetls module
adding the puppet ls subcommand.

$ puppet module install dalen-puppetls
$ puppet ls /tmp
Notice: Scope(Class[main]): compiling site.pp
Notice: Compiled catalog for fflaptop.local in environment production
this-is-a-file
 /home/ffrank/.puppetlabs/etc/puppet/env/production/manifests/site.pp:
 ffrank:www-data
$ puppet ls /tmp --catalog_terminus=json

The puppet ls subcommand will

1. retrieve a catalog if necessary
2. make a list of file resources
3. filter by path prefix

Simple and elegant, so let's talk code

Why the long face?

http://www.spendcrazy.net/horse-mask

Easy subcommand: short boilerplate code

require 'puppet/application/face_base'

class Puppet::Application::Ls < Puppet::Application::FaceBase

end

...in principle. In this case:

require 'puppet/application/face_base'

class Puppet::Application::Ls < Puppet::Application::FaceBase
 def app_defaults
 super.merge({
 :catalog_terminus => :rest,
 :catalog_cache_terminus => :json,
 })
 end

 def setup
 if Puppet[:catalog_cache_terminus]
 Puppet::Resource::Catalog.indirection.cache_class =
 Puppet[:catalog_cache_terminus]
 end
 super
 end
end

The face itself has a number of elements:

meta information (author etc.)
a SemVer compliant API version
inline documentation
a number of verbs that can form sub-subcommands
all of this written in a Ruby DSL
it can make use of other faces

Basic structure and metadata

require 'puppet/face'

Puppet::Face.define(:ls, '1.0.1') do
 license "Apache-2.0"
 copyright "Erik Dalén", 2016
 author "Erik Dalén <__redacted__@gmail.com>"

 summary "List files managed by Puppet"
 action :list do
 ...
 end
end

Action structure

action :list do
 default
 summary "List files and directories"
 description <<-'EOT'
 Reads and lists file resources from the catalog.
 The source of the catalog can be managed with the `--catalog_terminus` and
 the `--catalog_cache_terminus` option.
 EOT
 notes # ...
 returns # ...
 arguments "[<path>]"
 option "--recursive", "-r" do
 summary 'Recursively list files and directories'
 end
 when_invoked do |*args|
 ...
 nil
 end
end

Interfacing with other faces
(get it?)

when_invoked do |*args|
 options = args.pop
 if args.empty?
 path = Dir.pwd
 else
 path = File.expand_path args.pop
 end
 path = path[0..-2] if path.end_with? File::SEPARATOR

 catalog = Puppet::Face[:catalog, "0.0"].find # <-------------------

 catalog.filter { ... }.resources.sort { |x,y| ... }.each do |file|
 ...
 end
 nil
end

(actually this is another lie)

So what's so cool about
Faces?

Subcommands are good UX in this age of git.

DSL code is maintainable and comoposable.

i.e. search for:

See what other cool Faces are out there!

puppet::face.define site:github.com

e.g. by Ben Ford"Infrastructure"

https://github.com/binford2k/binford2k-puppet_infrastructure

So how can Puppet make me
a sandwich?

Well, it cannot.

But once you build an IoT sandwich maker,
you can easily build a Face for it!

$ puppet sandwich make --vegan --whole-corn

How can I connect Puppet
with other tools?

No cheating this time!

I'd go with a Face for this one.

you get a CLI to shell out to
you also get a Ruby API

What you don't just get is a HTTP API.

Example for a Face that links Puppet to another so�ware:

ffrank-mgmtgraph
Come see me tomorrow on the mgmt track :-)

https://forge.puppet.com/ffrank/mgmtgraph

How crazy can I go with these
Faces?

Free idea for a tool

ssh to remote system
make a GEM_HOME in /tmp and get Puppet
copy the pre-compiled catalog to remote
run puppet apply --catalog on remote

Essentially a glorified shell script.

Why make a Face?

Because those are available via puppet module install

SUMMARIZING
make manifest modules to make Puppet more powerful

make types and providers because they enhance
performance

make functions for more convenience

but also don't forget to make faces

Before we close:

We are hiring in Berlin!

unbelievable-machine.com/en/careers

https://www.unbelievable-machine.com/en/careers/

@felis_rex / ffrank Extending Puppet Gent 2017

Questions?

