
PUPPET AND MGMT
BETTER TOGETHER

Felix Frank

CfgMgmtCamp.eu Gent 2017

Felix - trying to automate all the things since 2004

ask me about Puppet
ask me about Ansible
ask me about mgmt (soon)
...or ask my employer if I can help with your project

Speaking of...

...we are hiring in Berlin

unbelievable-machine.com/en/careers

https://www.unbelievable-machine.com/en/careers/

WARNING!
Major Puppet spoilers ahead

Welcome!

Many cool things to talk about

So let's talk about game
development

http://7te.org/retro-game-collage-wallpaper.html

Games: stateful systems with really great UI

Game design lessons for utility so�ware

intuitive UI is everything
do lots of play testing
rapid prototyping

Larger game productions not unlike enterprise tools

e.g. European Air War

https://en.wikipedia.org/wiki/European_Air_War

It was doomed

New staff faced dozens of bugs

Hence first task:

add the

Cool Cam
feature

Ultimately an early gimmick feature saved the project

European Air War

https://www.youtube.com/watch?v=kt-7hwMZAJo

An early gimmick feature:

PUPPET SUPPORT IN MGMT

PUPPET+MGMT EXAMPLES

$ mgmt run --allow-tmp-prefix \
 --puppet 'package { "cowsay": ensure => installed }'

$ mgmt run --allow-tmp-prefix \
 --puppet 'file { "/etc/ntp.conf":
 content => template("/etc/ntp.conf.erb")
 }
 ~>
 service { "ntp": ensure => running }'

$ mgmt run --allow-tmp-prefix \
 --puppet 'class { "puppetdb": database => "embedded" }'

$ mgmt run --allow-tmp-prefix \
 --puppet /var/local/manifests/hardening.pp

$ mgmt run --allow-tmp-prefix --puppet agent

So how does this work?
let's take a quick deep dive

Two principal parts of Puppet

Side note:
the Puppet compiler

is not actually a compiler

catalog representation

On the wire, the catalog looks
very similar to the manifest

{
 "tags": ["settings","fflaptop.local"
 "name": "fflaptop.local",
 "version": 1486222644,
 "code_id": null,
 "catalog_uuid": "8bd0ee21-8ac9-4393-9ad3-01f8639f4e2c"
 "catalog_format": 1,
 "environment": "production",
 "resources": [
 {
 "type": "Stage",
 "title": "main",
 "tags": ["stage","main"],
 "exported": false
 },
 {
 "type": "Class",
 "title": "Settings",
 "tags": ["class","settings"
 "exported": false
 },

...
{
 "type": "File",
 "title": "/tmp/this-is-a-file",
 "tags": ["file","class"],
 "file": "/home/ffrank/.puppetlabs/etc/puppet/env/production/manifests/site.pp"
 "line": 4,
 "exported": false,
 "parameters": {
 "ensure": "present",
 "owner": "ffrank",
 "group": "www-data"
 }
},
{
 "type": "Exec",
 "title": "/usr/games/cowsay mooo",
 "tags": ["exec","node","fflaptop.local"
 "file": "/home/ffrank/.puppetlabs/etc/puppet/env/production/manifests/site.pp"
 "line": 14,
 "exported": false
}

actual metaparameters:
class { "demo":
arg => [
"complex", "value", # object { "/tmp/something":

"complex", "value",

{ sensible => false }]
}

{
 "type": "Class",
 "title": "Demo",
 "tags": ["class","demo"],
 "file": "",
 "line": 1,
 "exported": false,
 "parameters": {
 "arg": [
 "complex",
 "value",
 { "sensible": false }
]
 }
}

object { "/tmp/something":

content => "things-to-store"
}

{
 "type": "Object",
 "title": "/tmp/storage",
 "tags": ["object","class"],
 "file": "",
 "line": 1,
 "exported": false,
 "parameters": {
 "before": [
 "Service[ostor]"
],
 "content": "things-to-store"
 }
},

From catalog to Resource
Abstraction Layer

Finally the RAL catalog emerges

Puppet will hand this to the configurer

We remodel it into an mgmt graph instead

The mgmt interface you saw:

$ mgmt run --allow-tmp-prefix \
 --puppet 'package { "cowsay": ensure => installed }'

Internally, this invokes a puppet subcommand:

$ puppet mgmtgraph print \
 --code 'package { "cowsay": ensure => installed }'

This works courtesy of the moduleffrank-mgmtgraph

https://forge.puppet.com/ffrank/mgmtgraph

Transformation

{
 "type": "File",
 "title": "/etc/ntpd.conf",
 "tags": ["file","class"],
 "file": "",
 "line": 1,
 "exported": false,
 "parameters": {
 "ensure": "present"
 }
}

file:
- name: /etc/ntpd.conf
 path: /etc/ntpd.conf
 state: exists
 content:

{
 "type": "File",
 "title": "/etc/ntpd.conf",
 "tags": ["file","class"],
 "file": "",
 "line": 1,
 "exported": false,
 "parameters": {
 "ensure": "present"
 }
}

file:
- name: /etc/ntpd.conf
 path: /etc/ntpd.conf
 state: exists
 content:

Getting from A to B
translating type File
to file
using the title as
path
renaming the ensure
parameter to state
translating its vaule
from present to
exists
...let's convert that

to code

module PuppetX::CatalogTranslation
 Type.new :file do
 spawn :name do
 @resource.title
 end

 spawn :path do
 @resource[:name]
 end

 rename :ensure, :state do |value|
 case value
 when :present, :file, :directory
 :exists
 when :absent
 :absent
 else
 raise "cannot translate file ensure:
 end
 end

Getting from A to B
translating type File
to file
using the title as
path
renaming the ensure
parameter to state
translating its vaule
from present to
existsPuppet
name vs.

title
file { "the-ntp-configuration":
 path => "/etc/ntpd.conf",
 owner => "root",
}

file { "the-other-ntp-configuration-you-see":
 path => "/etc/ntpd.conf",
 mode => "0644",
}

This is the same file, twice!

Puppet knows this (it's not dumb).

This is how mgmt will see the former

file:
- name: the-ntp-configuration
 path: /etc/ntpd.conf
 content:

The name is chosen independently of the path.

In Puppet, name and title are distinct but related:

the title is chosen freely
the name gets its value from the namevar of the resource
(for files: path)
the namevar can use the title if not otherwise specified
(as in file { "/etc": })

Hence the rule:

spawn :path do
 @resource[:name]
end

It always picks up the actual path thanks to the namevar
semantics.

This is much safer than looking at the path parameter.

I lied about that rule, by the way.

Here's what it actually looks like:

mgmt has no state=directory.

It uses a trailing slash on the path.

spawn :path do
 if @resource[:ensure] == :directory
 @resource[:name] + "/"
 else
 @resource[:name]
 end
end

Here's the rule(s) for another resource type

PuppetX::CatalogTranslation::Type.new :whit do
 emit :noop

 spawn :name do
 @resource[:name]
 end
end

What, you never heard of the whit resource?

Let's talk about containment

Class['ntp'] -> Class['kerberos']

edges to containers become edges to their whit boundaries

Too Weird; Didn't Listen?
the translation will just deal with classes, defines,

and relationships between them

Advantages of this approach

static validation by Puppet's agent engine
Puppet magic like autorequire Just Works
the usual convenience from Puppet's munging rules
applies

on the flipside:

a full agent installation on every node is needed
getting an abstract catalog from a master using REST
would work as well
but then you lose all the advantages mentioned above

Perhaps you will find a better compromise?

All that being said, there are
some general restrictions

when running from
Puppet code.

Puppet will always create a catalog using point-in-time input

facts seen on the node
values from PuppetDB
manifest code

The catalog builder derives

a consistent graph that represents
the desired state of the (complete) system
as of the time of requesting the catalog
and which is suited
to converge in a single transaction

mgmt can actually update the graph of a running agent

However, adding support for triggered Puppet graph
rebuilds does not seem sensible

So what can you expect?

A sensible goal is to make it possible to run (the) most
(popular) Puppet modules through mgmt.

For mgmt to become effective, however, a custom DSL is
much more important.

That's because Puppet's DSL has some built-in assumptions.

Example: facts are static values

class { "apache": mpm_module => "prefork" }

$process_cap = Integer($memorysize_mb / 125.0 - 10.0)
class { "apache::mod::prefork":
 maxclients => $process_cap
}

In a VM, the memory size could change on the fly.

mgmt could receive an event about that and initiate action.

But Puppet cannot emit a structure that reflects this.

In summary
Support for Puppet manifests is neat, it eases testing right

now and will help wider adoption.

On the other hand, a custom DSL for mgmt will allow actual
new config management practices that a translated catalog

cannot implement.

QUESTIONS

"The Cool Cam" originally published at http://thedailywtf.com/articles/The-Cool-Cam

Bonus content
But what about Puppet resources that mgmt does not have?

Consider the puppet resource command

It allows simple resource management from the shell.

$ puppet resource nagios_host mail01 ensure=absent

There's just one problem:

nagios_host { 'mail01':
 host_groups => ["mailservers", "legacy"]
}

Non-trivial values like hashes and arrays are not supported.

Solution
Yet another Puppet module that introduces

the puppet yamlresource face:

$ puppet yamlresource nagios_host \
 mail01 '{ "ensure": "absent" }'
$ puppet yamlresource nagios_host \
 mail01 '{ "host_groups": ["mailservers", "legacy"] }'

Now the translator can emit an exec resource
that makes Puppet do the legwork

PuppetX::CatalogTranslation::Type.new :default_translation do
 emit :exec

 catch_all

 spawn :name do
 @resource.type.to_s.capitalize + ":" + @resource[:name]
 end

 def command(resource)
 r_type = @resource.type.to_s
 r_title = @resource[:name]
 r_params = @resource.to_hash.reject { |attr,value|
 attr == :name
 }
 "puppet yamlresource #{r_type} '#{r_title}' " +
 "'#{Psych.to_json(r_params).chomp}'"
 end

 spawn :cmd do
 command(@resource)
 end

puppet mgmtgraph print --code \
'nagios_host { "mail01": ensure => absent }'
 exec:
 - name: Nagios_host:mail01
 cmd: |-
 puppet yamlresource nagios_host 'mail01' '{
 "host_name": "mail01", "provider": "naginator",
 "ensure": "absent", "target": "/etc/nagios/nagios_host.cfg",
 "loglevel": "notice"}'
 timeout: 30
 shell: /bin/bash
 watchshell: /bin/bash
 ifshell: /bin/bash
 watchcmd: 'while : ;
 do echo "puppet run interval passed" ; /bin/sleep 1800 ;
 done'
 ifcmd: |-
 puppet yamlresource nagios_host 'mail01' '{
 "host_name": "mail01", "provider": "naginator",
 "ensure": "absent", "target": "/etc/nagios/nagios_host.cfg",
 "loglevel": "notice"}' --noop --color=false \
 | grep -q ^Notice:
 state: present
 pollint: 0

@felis_rex / ffrank Puppet and mgmt Gent 2017

Starting lots of puppet processes though...well...

http://imgur.com/gallery/gsM3Lt5

